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The small-amplitude wave modes inside a ducted inviscid compressible swirling flow
are investigated. In order to avoid possible mathematical ambiguities arising from the
use of an inviscid flow model, the wave modes are cast as the solution of an initial
boundary value problem. Two families of propagating waves are found. The acoustic
modes are supported by the compressibility effect of the flow. The rotational modes
are sustained by the centrifugal force field associated with the mean flow rotation.
Two cases, one with a free-vortex swirl and the other with a rigid-body swirl, are
investigated in some depth. Numerical results are provided.

1. Introduction
A good understanding of the characteristics of small-amplitude wave modes in a

ducted swirling flow is of great importance to turbomachine design and turboma-
chinery noise prediction. In a uniform inviscid compressible flow, it is well-known
(Kovasznay 1953) that the flow supports three types of waves, namely, the acoustic, the
vorticity and the entropy waves. In a ducted swirling flow, the situation is much more
complicated. There is coupling between compressible and rotational effects so that a
simple modal decomposition cannot readily be performed. The analysis of these wave
modes has been the subject of a considerable number of investigations in the past.

In a ducted swirling flow, three physical mechanisms are present to sustain wave
motions. First is the compressibility of the fluid. This gives rise to the acoustic modes.
Second is the centrifugal force field associated with the rotational motion of the
mean flow. Spatial variation of this force field is generally sufficient to support axial
propagating wave modes. We will refer to these modes as the rotational modes.
Finally, shear gradients of the mean velocity profile can, in some instances, support
propagating shear waves. For inviscid flow, it is well-known that if an inflection point
exists in the velocity profile, the flow will be subjected to Kelvin–Helmholtz instability.
However, in typical turbomachines, the mean flow is monotonic and stable. In this
work, instability waves generated by velocity gradients will not be considered. Our
study will be confined primarily to the acoustic and the rotational wave modes.

The presence of a confining duct wall plays a crucial role in the formation of
ducted wave modes. The continuous reflection of disturbances from the wall, when
properly phased, leads to constructive reinforcements and cancellations. In this way, a
distinctive wave pattern or a wave mode is formed. Because of the need to have precise
reinforcements and cancellations, wave speed and frequency that set the timing are
crucial to the process. Therefore, the speed of propagation of a duct mode is sensitive
to the wave frequency. Thus the duct modes, unlike freely propagating acoustic waves,
are intrinsically dispersive.
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The study of small-amplitude disturbances in ducted flows began in earnest in
the sixties. Tyler & Sofrin (1962) investigated the spinning acoustic modes in a duct
with uniform throughflow but no swirl. The effect of non-uniform velocity on the
duct modes was investigated by Pridmore-Brown (1958), Mungar & Plumblee (1969),
Shankar (1972), Unruh & Eversman (1972), Ko (1973), Swinbanks (1975), Nayfeh,
Kaiser & Telionis (1975) and numerous others. For a comprehensive review of the
literature on this class of waves, one may consult the article by Eversman (1991). For
ducted flows with swirl, the propagation of small-amplitude disturbances has been
investigated by Salant (1968), Greitzer & Strand (1978), Kerrebrock (1984, 1987),
Yurkovich (1976), Yousefian (1975), Tan & Greitzer (1986). Recently, Wundrow (1994)
and Golubev & Atassi (1995, 1997) examined the response of a blade row to incoming
disturbances in ducted swirling flows. They followed the work of Goldstein (1978) and
Atassi & Gredzinski (1989) in forming a mathematical representation of the input
disturbances. Their studies, however, were on the forced response characteristics of
the flow and not on its intrinsic wave modes.

Recently, Kousen (1995, 1996) attempted a systematic analysis of the small-
amplitude wave modes in a swirling, inviscid, compressible flow in an annulus.
He used the standard normal mode approach based on the method of separation
of variables. The wave modes were determined by an eigenvalue problem. Kousen
computed the eigenvalues and eigenfunctions numerically by the spectral method. His
numerical results indicate that there are three families of wave modes. The first family
is the Tyler–Sofrin spinning acoustic waves. The second family is related to the swirl
of the mean flow that Kousen referred to as the ‘nearly convected modes’. The third
family forms a continuum of modes. The wavenumber of these waves is such that the
convective derivative, D/Dt, of the wave is zero. Kousen called these modes ‘purely
convected modes’. The existence of the purely convected modes was also suggested in
the works of Kerrebrock (1984, 1987). Most recently the problem was investigated by
Golubev & Atassi (1997) again using the normal mode approach. Their work focused
on the computation of the ‘nearly convected modes’. Regarding the families of wave
modes supported by the flow, their conclusions are similar to those of Kousen.

The objectives of this investigation are twofold. First, we seek a clarification of
the types of wave modes that are sustained by a ducted, inviscid, compressible
swirling flow. This will be done by posing the problem as an initial value problem.
Secondly, we investigate the intrinsic propagation characteristics of all these wave
modes. Knowledge of such characteristics would be helpful to turbomachine loading
and noise radiation estimates. They are also essential to the determination of the
resolution requirements in any time-domain numerical simulation of these flows.

It is well recognized that if the normal modes of a system are complete then any
disturbances can be represented by a simple superposition of the normal modes. In
this case, a normal mode analysis of the flow system is sufficient for most purposes.
However, for a complex flow system such as that associated with swirling compressible
flow inside a duct, the question of completeness cannot be easily ascertained. Under
this circumstance, an initial value approach is necessary to provide a complete rigorous
analysis of the wave modes. In the literature, there are examples in which ambiguities
can arise in the analysis of inviscid flows; e.g. the case of damped Kelvin–Helmholtz
waves (see Tam 1975; Tam & Morris 1980). One way to remove such ambiguities
is to pose the problem as an initial boundary value problem. As such, time-periodic
solutions are time-asymptotic solutions. Since the evolution in time is followed, the
solution is complete and most of the ambiguities can be removed by appealing to
analytic continuation.
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One important result of the present investigation is that, excluding instability wave
modes, a ducted inviscid compressible swirling flow will support only two families of
waves. They are the acoustic modes and the rotational modes. The acoustic modes
are produced by the effect of compressibility while the rotational modes are sustained
by the centrifugal force field associated with the mean flow swirl. The so-called purely
convected modes do not exist. They are spurious modes produced by an ambiguity
in performing a normal mode analysis. In §4, numerical results on the acoustic
and rotational modes are reported. The incompressible limit and the no-swirl limit
are investigated to show clearly the basic underlying mechanisms responsible for
maintaining the two families of wave modes.

2. Initial boundary value formulation
Consider an inviscid compressible non-heat-conducting swirling flow inside an

annulus of outer radius R and inner radius σR where σ (σ < 1) is the hub to tip ratio.
Dimensionless variables with R as the length scale, at (the sound speed at r = R) as
the velocity scale, R/at as the time scale, ρt (the density of the fluid at r = R) as the
density scale, ρta

2
t as the pressure scale and ρta

2
t /R (force per unit volume) as the

body force scale, will be used. The governing equations are the Euler equations. It is
easy to show that the most general axisymmetric time-independent flow (denoted by
an overbar) in cylindrical coordinates (r, φ, x) is,

u = u(r), v = 0, w = w(r), ρ = ρ(r),

p(r) = −
∫ 1

r

ρ w2

r
dr + p0,

 (1)

where p0 is the pressure at r = 1; (u, v, w) are the velocity components in the (x, r, φ)
directions. In (1) u(r), w(r) and ρ(r) are arbitrary functions of r.

Small-amplitude disturbances superimposed on the above mean flow are governed
by the linearized Euler equations. On writing out in full, these equations are
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where Fr , Fφ and Fx are body forces, and γ is the ratio of specific heats. These body
forces may be regarded as representing the forces imparted to the flow by a rotating
blade row. The boundary conditions at the outer and inner walls are

r = 1, v = 0, (7)

r = σ, v = 0, (8)
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Equations (2) to (6) and boundary conditions (7) and (8) will be considered as an
initial boundary value problem. Since our interest is to find the wave modes supported
by the flow and not on the transient behaviour of the system, we will assume zero
initial conditions. That is, at t = 0

u = v = w = ρ = p = 0. (9)

Effectively it is the body forces that drive the wave modes of the problem.
The dependence on φ can be expanded in a Fourier series. Also we are interested

primarily in time-periodic body forces. The period is related to the rotational period
of the blade row. Thus, without loss of generality, we will assume that the body forces
have the form, [

Fr
Fφ
Fx

]
=

 F̂r(r, x)

F̂φ(r, x)

F̂x(r, x)

 ei(mφ−Ωt), (10)

where m is an integer and Ω is the forcing angular frequency. It is to be noted that
the physical solution is given by the real part of the mathematical solution.

The Fourier–Laplace transform of a function f(x, t) and its inverse f̃(k, ω) are
related by

f̃(k, ω) =
1

(2π)2

∫ ∞
−∞

∫ ∞
0

f(x, t)e−i(kx−ωt) dt dx,

f(x, t) =

∫ ∞
−∞

∫
Γ

f̃(k, ω)ei(kx−ωt) dω dk,

 (11)

where the inversion contour Γ is taken to be in the upper-half ω-plane parallel to
the real ω-axis above all the poles and singularities of the integrand.

It is obvious that the solution of the linear problem has eimφ dependence. On
factoring out eimφ, the Fourier–Laplace transforms of (2) to (6) are
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ṽ+γ p

[
1

r

d(ṽ r)
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= 0. (16)

It is possible, by eliminating all other variables from the above equations, to find
a single equation for p̃. This can be done by first eliminating the square bracketted
terms in (12) and (16) to obtain ρ̃ in terms of p̃ and ṽ. Thus ρ̃ in (13) can be
replaced by terms involving p̃ and ṽ. Next, the modified equation (13) can be solved
simultaneously with (14) for ṽ and w̃ in terms of p̃. Of use later is the following
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relation between ṽ and p̃:
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Finally, by substitution into (16) and upon eliminating ũ by (15), a single second-order
differential equation for p̃ is found
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p̃ =
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2π ρ2 X2(ω − Ω)
. (20)

In order to keep the non-homogeneous terms on the right-hand side of (20) as simple

as possible, we have set F̃r = F̃φ = 0. In a turbomachine F̃φ is not zero. It is
set equal to zero here purely for convenience. It can be shown, however, that the
wave propagation characteristics in a ducted environment are independent of the

sources, i.e. F̃r , F̃φ and F̃x, which produce them. They depend only on the mean flow
profiles. For the purpose of investigating the wave mode properties, there is no loss

of generality by setting F̃φ = 0.
The boundary conditions for p̃ are found by imposing (7) and (8) on (17). This

leads to the conditions

r = 1, r = σ :

(
ρ

γ p
w+

2m

rX

)
w

r
p̃−d p̃

dr
= 0. (21)

It is useful to note that ω in (20), the Laplace transform variable, is a value on
the inversion contour Γ in the complex ω-plane. Since Γ is located in the upper-half
ω-plane, ω will have a positive imaginary part. Thus the quantity X cannot be equal
to zero (k on the k-inversion contour is real). In other words, equation (20) does not
have regular singular points on account of X being zero at some values of r.

The solution of (20) corresponding to arbitrary radial distribution of body force

F̃x can be found by simple integration over the Green’s function of the equation. For
the purpose of determining the wave modes supported by the ducted swirling flow, it
is sufficient to consider only the Green’s function. The Green’s function is generated
by a highly concentrated body force (the delta function) and would produce all wave

modes. In what follows, F̃x will be replaced by

F̃x =
F(k)

2π
δ (r − r) , σ < r < 1. (22)
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Now let f(r, k, ω) and g(r, k, ω) be two linearly independent solutions of the homog-
eneous form of equation (20). The solution of (20) and (22) satisfying boundary
condition (21) may be written as a linear combination of f and g following standard
procedure of constructing the Green’s function of a second order differential equation.
It is straightforward to find

p̃(r, k, ω) =
kF(k)

2π(ω − Ω)

(
∆

ρ2 X2

)
r=r

× [f(r>, k, ω) + c1g(r>, k, ω)][f(r<, k, ω) + cσg(r<, k, ω)]

(c1 − cσ)[f(r, k, ω)g′(r, k, ω)− f′(r, k, ω)g(r, k, ω)]
, (23)

where r> (r<) is the greater (lesser) of r and r, g′ = dg/dr, f′ = df/dr and

c1 =

[
df

dr
−
(
ρ
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, (24)
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)
w

r
f

]
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w
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dr

]
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. (25)

The solution in physical space and time can now be found by inverting the Fourier–
Laplace transforms. By means of (23), we have,

p(r, x, t) =
1

2π

∫
Γ

∫ ∞
−∞

kF(k)

(ω − Ω)

(
∆

ρ2 X2

)
r=r

× [f(r>, k, ω) + c1g(r>, k, ω)][f(r<, k, ω) + cσg(r<, k, ω)]ei(kx−ωt)

(c1 − cσ)[f(r, k, ω)g′(r, k, ω)− f′(r, k, ω)g(r, k, ω)]
dk dω. (26)

Equation (26) has a pole on the real ω-axis at ω = Ω (the forcing frequency). Of
interest to us are the neutral propagating wave modes. These modes come from the
poles of the integrand lying on the real k-axis in the complex k-plane. The factor
[f(r, k, ω)g′(r, k, ω)−f′(r, k, ω)g(r, k, ω)] in the denominator of the integrand of (26) is
the Wronskian of f and g. By assumption, f and g are linearly independent solutions
for σ 6 r 6 1. The Wronskian cannot be equal to zero. Therefore, the poles of the
integrand come from the zeros of (c1 − cσ). That is

D(k, ω) ≡
[(

ρ

γ p
w+

2m

rX

)
w

r
f − df

dr

]
r=1

[(
ρ

γ p
w+

2m

rX

)
w

r
g − dg

dr

]
r=σ

−
[(

ρ

γ p
w+

2m

rX

)
w

r
f − df

dr

]
r=σ

[(
ρ

γ p
w+

2m

rX

)
w

r
g − dg

dr

]
r=1

= 0. (27)

Equation (27) is the dispersion relation. Since Γ is in the upper-half ω-plane, we can
deform the contour as shown in figure 1 to pick up the pole at ω = Ω. During the
contour deformation process, some zeros of D(k, ω) in the k-plane move to the real
k-axis. Some zeros may even cross over from the upper-half to the lower-half k-plane
and vice versa. The k-inversion contour must be deformed as shown in figure 2 to
avoid crossing by the poles. This is necessary to maintain analytic continuation. This



The wave modes in ducted swirling flows 7

O
Re (ω)

Ω

Γ

Im (ω)

Figure 1. Deformation of the inversion contour Γ to the real ω-axis to pick up the pole at Ω.

O
Re (k)

Im (k)

k-contour

Trajectory of
a poleBranch

cut

Figure 2. Deformation of the k-inversion contour in the k-plane for poles coming from the
upper-half plane during the deforming of the Γ -contour in the ω-plane; x > 0.

contour deformation process has been described in detail and used by Tam & Hu
(1989a,b). The poles that cross the real k-axis will give rise to spatially amplifying
waves. The poles that reach the real k-axis will give rise to undamped propagating
wave modes. For x > 0, the propagating modes are given by the residues of the
poles that reach the real k-axis starting from the upper-half plane. For x < 0, the
propagating modes are given by the residues of the poles that reach the real k-axis
starting from the lower-half plane. For the purpose of determining the type of neutral
propagating modes of the flow, we have, by evaluating the contributions from the
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O Re (r)

Im (r)

rc

r

Figure 3. Deformation of the r-integration contour in the complex r-plane when
rc approches the real axis.

pole at ω = Ω and the poles in the k-plane,

p(r, x, t) =



2π
J∑
j=1

[(
∆

ρ2 X2

)
r=r

kF(k)

× [f(r>, k, ω) + c1g(r>, k, ω)][f(r<, k, ω) + cσg(r<, k, ω)]ei(kx−Ωt)

[f(r, k, ω)g′(r, k, ω)− f′(r, k, ω)g(r, k, ω)]∂/∂k(c1 − cσ)

]
ω=Ω,k=kj

+ . . . ; x > 0,

−2π
I∑
i=1

[(
∆

ρ2 X2

)
r=r

kF(k)

× [f(r>, k, ω) + c1g(r>, k, ω)][f(r<, k, ω) + cσg(r<, k, ω)]ei(kx−Ωt)

[f(r, k, ω)g′(r, k, ω)− f′(r, k, ω)g(r, k, ω)]∂/∂k(c1 − cσ)

]
ω=Ω,k=ki

+ . . . ; x < 0,
(28)

where kj (j = 1, 2, . . . , J) are the zeros of D(k, ω) that move from the upper-half k-
plane to the real k-axis during the contour deformation process and ki (i = 1, 2, . . . , I)
are the corresponding zeros that move to the real axis from the lower-half k-plane.

It is observed that for ω and k both real, X = (ω − k u−mw /r) may become
zero at some value of r, say r = rc. When this happens (20) would have a regular
singular point at r = rc. Mathematically, such a solution is not the correct analytical
continuation of the physical solution. The correct analytical continuation solution
is obtained by deforming the integration contour in the complex r-plane as shown
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in figure 3. This procedure has been discussed and used by Tam (1975) and Tam
& Morris (1980). By deforming the contour in the r-plane to avoid crossing the
critical point rc, X will remain unequal to zero. In this way, analytic continuation is
maintained.

Now the coefficients of equation (20) are real as long as ω and k are real and
X never becomes zero for σ 6 r 6 1. It follows that the two linearly independent
homogeneous solutions f and g are real. Under this condition D(k, ω) is real and
hence some of the roots of D(k, Ω) = 0 are real. That is, the flow supports neutral
propagating wave modes. On the other hand, for real k and ω if X becomes zero for
σ 6 r 6 1, the r-integration must be carried out on the deformed contour. The result
is that f and g are complex. Hence D(k, Ω) is also complex. In this case the roots of
D(k, Ω) = 0 would be complex, so that there is no neutral propagating mode. This
means that the so-called ‘purely convected modes’ cannot exist.

3. Free-vortex swirl
In the past, a number of investigators (e.g. Kerrebrock 1984, 1987; Wundrow 1994;

Golebev & Atassi 1995) used a free-vortex swirl superimposed on a uniform axial
throughflow as a mean flow model for the study of small amplitude wave modes
inside an annulus. Mathematically, the mean flow is taken to be,

u = M, v = 0, w =
Γ

r
, ρ = 1, p =

Γ 2

2

(
1− 1

r2

)
+

1

γ
, (29)

where M is the axial Mach number and Γ is the circulation. Recently, this flow was
studied more carefully by Kousen (1995, 1996). He carried out extensive computation
of the dispersion relation of the various types of wave modes supported by the
free-vortex swirl using the spectral method. He reported the finding of a continuum
of ‘purely convected’ modes with wavenumber given by X = (Ω −Mk − mΓ/r2) = 0
for σ 6 r 6 1. The possible existence of these purely convected modes was elaborated
earlier by Kerrebrock (1984, 1987).

There is currently a rich literature on the stability of rotating flows. For inviscid
fluid, Rayleigh (1916) (see Lin 1967, Chapter 4; Chandrasekhar 1961, Chapter 7)
established that the necessary and sufficient condition for stability is

d

dr
(w r)2 > 0. (30)

It is easy to verify that for the free-vortex swirl, this stability criterion is violated.
Thus the flow is basically unstable and the finding of an unstable mode should not
be at all unexpected.

In this section, we will report our numerical results on the wave modes of the free-
vortex swirl and compare them with those of the previous investigators. According
to the analysis of the previous section, the wavenumbers of the wave modes of the
flow are given by the roots of

D(k, ω) = 0, (31)

where D is the dispersion function of (27). To calculate D, two linearly independent
solutions f and g of the homogeneous equation (20) must first be found. In this
work, the solutions are obtained by direct numerical integration of the second-order
differential equation using the Runge–Kutta scheme. However, it is noticed that for
large k the equation is stiff. To ensure that the two numerical solutions are, indeed,
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Figure 4. Wavenumbers of the acoustic modes in a free vortex swirl flow. ———–, Re(D) = 0;
– – – – –, Im(D) = 0. M = 0.3, m = 2, Ω = 10.0, Γ = 0.2, σ = 0.4.

linearly independent, the method of orthonormalization (see Scott & Watts 1977) is
followed in the integration process.

To locate the roots of D(k, Ω) in the complex k-plane, the grid search method of
Tam & Hu (1989a,b) is employed. In this method, the region in the k-plane where
the zeros of D are to be found is first divided into a fine grid. The values of D are
then calculated at each of the grid points. Next, the curves Re(D) = 0 and Im(D) = 0
are determined by a two-dimensional interpolation programme using the values of D
on the grid. The intersection points of these two sets of curves automatically give the
roots of D. The grid search method is accurate and efficient. When higher accuracy
is desired, a Newton iteration refinement is applied using the roots of the grid search
as starting points.

We concentrate our numerical effort on the case M = 0.3, Γ = 0.2, m = 2, σ = 0.4,
Ω = 10.0 of the free-vortex swirl flow. This is the same flow as studied by Kousen
(1996). There are two types of waves. The wave modes that are of acoustic origin
have wavenumbers in the range −15.0 < k < 10.0. Figure 4 shows the wavenumbers
of these modes in the complex k-planes located by the grid search method. The roots
of D lying off the real k-axis are damped waves. There are two acoustic wave modes
with real positive k-values and two acoustic wave modes with real negative k-values.
The former are waves propagating in the positive x-direction while the latter are
waves propagating in the negative x-direction. In Kousen’s paper, three positive and
three negative real k-values are found. However, two of each of the three k-values are
very close to each other. We suspect that they are the same mode but are split off by



The wave modes in ducted swirling flows 11

the numerical algorithm used. Except for this difference, the numerical values of the
present finding are in good agreement with those of Kousen (1996).

If purely convected modes exist for the free-vortex swirl flow under consideration,
their wavenumbers should lie along the real k-axis in the range of 25 6 k 6 32. If we
perform a grid search over the rectangle 25 6 Re(k) 6 32 and −2.0 6 Im(k) 6 0.5,
we find no zero of D(k, ω) on the real k-axis. Instead, our search locates a spatially
amplifying (unstable) wave mode at k = (26.18− 0.238i) propagating to the positive
x-direction. In order to show that this is, indeed, a spatially amplifying wave mode,
the wavenumber of this mode is first located in the complex k-plane with ω set
equal to (10.0 + 0.2i). This corresponds to Γ lying in the upper-half ω-plane. This
is shown in figure 5(a). The imaginary part of ω is subsequently reduced and the
movement of the wavenumber of this mode is tracked. At ω = (10.0 + 0.1i), the
location of the wavenumber is at the real k-axis. Finally, as the imaginary part of ω
is further reduced, the wavenumber crosses the real k-axis into the lower-half k-plane
and reaches the value (26.18 − 0.239i) when Im(Ω) becomes zero, figure 5(b). Thus
this mode that originates in the upper-half k-plane is truly a spatially amplifying
wave created by the instability of the free-vortex swirl. Figure 6 shows the spatial
distribution of the real and imaginary part of the pressure eigenfunction associated
with the spatially amplifying wave. It is evident that the pressure fluctuations are
concentrated mainly near the hub of the annulus. This is, perhaps, not too surprising
for this is where the swirl is the strongest.

4. The acoustic and the rotational modes
Inside a ducted inviscid compressible swirling flow, there are basically two types

of propagating wave modes, assuming that there are no instability waves. They are
the acoustic modes and the rotational modes. To illustrate the main features of the
acoustic and the rotational modes, we will consider a mean flow characterized by a
rigid-body swirl. That is,

u = M, v = 0, w = Ω r, ρ = 1, p =
1

γ
− Ω

2

2
(1− r2). (32)

The rigid-body swirl model is a good representation of the mean flow in turboma-
chines. It has been used by Salant (1968), Kerrebrock (1984, 1987), Golebev & Atassi
(1995) and Kousen (1995, 1996) in their works on small amplitude wave modes in
ducted swirling flows.

In order to show unambiguously that acoustic modes are sustained by compress-
ibility effects while rotational modes are maintained by mean flow swirl, we will focus
on two special limits. First, we will consider the incompressible limit. In this case,
there cannot be any acoustic modes. All the wave modes of the flow system are
rotational modes. Second, we will consider the no-swirl limit, i.e. Ω → 0. In this case,
the flow has only acoustic modes.

4.1. The incompressible limit

In the incompressible limit, with (32) as the mean flow, (20) becomes

d2 p̃

dr2
+

1

r

d p̃

dr
+

[
k2 (4Ω

2−X2)

X2
− m2

r2

]
p̃ =

∆

2π(ω − Ω)X2
kF(k)δ(r − r), (33)
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Figure 5. (a) The instability wavenumber in a free vortex swirl flow. ———–, Re(D) = 0;
– – – – –, Im(D) = 0. M = 0.3, m = 2, Γ = 0.2, σ = 0.4, Ω = 10.0 + 0.2i (b) Same as (a)
except Ω = 10.0; x——→—— trajectory of unstable pole.

where

X = ω −Mk − mΩ, ∆ = 4Ω
2−X2. (34)

The two linearly independent homogeneous solutions of (33) are the Bessel and

Neumann functions of order m, i.e. Jm(k(4Ω
2−X2)1/2r/X) and Ym(k(4Ω

2−X2)1/2r/X).

The branch cuts of the square root function (4Ω
2−X2)1/2 in the arguments of these
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Figure 6. Pressure eigenfunction of the free vortex swirl instability wave: ———–, real part;
· · · · · · · ·, imaginary part. M = 0.3, m = 2, Ω = 10.0, Γ = 0.2 σ = 0.4.
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Figure 7. The branch cuts of the function (4Ω
2−X2)1/2 in the k-plane.

functions need to be clearly defined in the k-plane. Here we will let

(4Ω
2−X2)1/2 = e3πi/2(k − k1)

1/2(k − k2)
1/2M. (35)

The branch points k1 and k1 are

k1 =
ω + (2− m)Ω

M
, k2 =

ω − (2 + m)Ω

M
. (36)

Figure 7 shows the branch cuts of this function in the k-plane. The behaviour of the

Bessel and Neumann functions for real k depends on whether (4Ω
2−X2)1/2 is real or

purely imaginary. When this function is real both the Bessel and Neumann functions
are real. Further, real Bessel and Neumann functions are oscillatory with many zeros.
The existence of these zeros makes it possible for the solution (eigenfunction) to satisfy
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the homogeneous boundary conditions at r = 1 and r = σ. Therefore, propagating
modes are possible for

k2 < k < k1. (37)

Outside this range of k (real k), the solutions are the modified Bessel and Hankel
functions. These are monotonic functions. Hence they cannot satisfy the homogeneous
boundary conditions at the hub and the tip. Thus there will not be propagating wave
modes with wavenumber k lying outside the range of (37).

For incompressible rigid-body swirl flow, dispersion relation (27) simplifies to[
κJ ′m(κσ)− 2mΩ

X
Jm(κσ)

] [
κY ′m(κ)− 2mΩ

X
Ym(κ)

]
−
[
κJ ′m(κ)− 2mΩ

X
Jm(κ)

] [
κY ′m(κσ)− 2mΩ

X
Ym(κσ)

]
= 0, (38)

where

κ ≡ κ(k) =
kM

X
e3πi/2(k − k1)

1/2(k − k2)
1/2. (39)

The wavenumbers of the rotational modes are given by the roots of (38) in the
range k2 < k < k1. From (28), the pressure field associated with a rotational mode of
wavenumber kn (including the dependence on φ) may be written out explicitly as,

p(r, φ, x, t) = 2π
kn∆nF(kn)

κnXn

×

[
Jm(κnr>)− κnJ

′
m(κn)− (2mΩ /Xn)Jm(κn)

κnY ′m(κn)− (2mΩ /Xn)Ym(κn)
Ym(κnr>)

]
[
Jm(κn r)Y ′m(κn r)− J ′m(κn r)Ym(κn r)

]

×

[
Jm(κnr<)− κnJ

′
m(κnσ)− (2mΩ /Xn)Jm(κnσ)

κnY ′m(κnσ)− (2mΩ /Xn)Ym(κnσ)
Ym(κnr<)

]
d

dkn

[
κnJ

′
m(κnσ)− (2mΩ /xn)Jm(κnσ)

κnY ′m(κnσ)− (2mΩ /Xn)Ym(κnσ)
− κnJ

′
m(κn)− (2mΩ /xn)Jm(κn)

κnY ′m(κn)− (2mΩ /Xn)Ym(κn)

]
∣∣∣∣∣∣∣∣∣
ω=Ω

× ei(knx+mφ−Ωt), x > 0, (40)

where r> (r<) is the larger (smaller) of r and r, κn is κ(kn) given by (39), Xn and
∆n are given by (34) with k replaced by kn and ω by Ω, the forcing frequency. It is
straightforward to write down an expression similar to (40) valid for x < 0 (upstream
propagating waves).

Figure 8 shows the wavenumbers of the rotational modes in an incompressible rigid-
body swirl flow for M = 0.3, Ω = 0.5, m = 2, Ω = 10.0 and σ = 0.4. They are the roots
of (38) and lie in the range 26.7 < k < 33.3. In the incompressible limit, the rotational
modes are the only propagating modes of the flow. If the compressibility effect is
included, the wavenumbers of these modes are slightly modified. Figure 9 shows the
wavenumbers of the rotational as well as the acoustic modes in the k-plane. They are
in good agreement with the calculations of Kousen (1996), the exception being that
Kousen included a band of spurious purely convected modes. Figure 10 is a portion
of the magnified k-plane showing the effect of compressibility on the wavenumbers
of the rotational modes. For the wave modes shown, compressibility effects reduce
the wave speed and the wavelength. The reduction is, however, very small.
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Figure 8. Wavenumbers of the rotational modes in an incompressible inviscid rigid-body swirl
flow. M = 0.3, Ω = 0.5, m = 2, Ω = 10.0, σ = 0.4.

4.2. The no-swirl limit

If swirl is dropped from the mean flow of (32) the non-homogeneous equation (20)
and boundary condition (21) become

d2 p̃

dr2
+

1

r

d p̃

dr
+

[
(ω −Mk)2 − k2 − m2

r2

]
p̃ =

−k
2π(ω − Ω)

F̃x(r, k). (41)

At r = 1, σ

d p̃

dr
= 0. (42)

It is easy to show that the homogeneous problem of (41) and (42) forms a Sturm–
Liouville eigenvalue problem. The Sturm–Liouville theorem assures that the eigen-
functions form a complete orthogonal set. The eigenfunctions, ymn(r), are a linear
combination of the mth-order Bessel and Neumann function

ymn(r) =

[
Jm(λmnr)−

J ′m(λmn)

Y ′m(λmn)
Ym(λmnr)

]
, (43)

where λmn (n = 1, 2, . . .) are the eigenvalues. The eigenvalues are the roots of

J ′m(λmnσ)Y ′m(λmn)− J ′m(λmn)Y
′
m(λmnσ) = 0. (44)

The eigenfunctions are complete so the solution p̃ of (41) can be expanded in a
series of the eigenfunctions, i.e.

p̃(r, k, ω) =

∞∑
n=1

Anymn(r). (45)
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Figure 9. Wavenumbers of the rotational and acoustic modes in a compressible inviscid
rigid-body swirl flow. M = 0.3, Ω = 0.5, m = 2, Ω = 10.0, σ = 0.4.

The coefficient An can be readily found by the substitution of (45) into (41) and the
use of the orthogonality property of the eigenfunctions. This yields

An =

− 2kλ2
mn

ω − Ω

∫ 1

σ

F̃x(k, r)ymn(r)r dr

[(λ2
mn − m2) y2

mn(1)− (λ2
mnσ

2 − m2) y2
mn(σ)][(ω −Mk)2 − k2 − λ2

mn]
. (46)

The pressure field in space and time associated with the acoustic modes excited by
the body force Fx may be found by performing the Fourier–Laplace inverse transform
on (45). It is a simple matter to find, after some algebra,

p(r, φ, x, t) =



∑
n

4π2λ2
mnk

+
n Fn(k

+
n )ymn(r)e

i(k+
n x+mφ−Ωt)

[(λ2
mn − m2)y2

mn(1)− (λ2
mnσ

2 − m2)y2
mn(σ)][ΩM + (1−M2)k+

n ]
,

x > 0∑
n

−4π2λ2
mnk

−
n Fn(k

−
n )ymn(r)e

i(k−n x+mφ−Ωt)

[(λ2
mn − m2)y2

mn(1)− (λ2
mnσ

2 − m2)y2
mn(σ)][ΩM + (1−M2)k−n ]

,

x < 0

(47)
where

k±n =
−ΩM ± [Ω2 − (1−M2)λ2

mn]
1/2

1−M2
, (48)

Fn(k) =

∫ 1

σ

F̃x(k, r)ymn(r)r dr. (49)

In (47) the summation needs to be carried out for values of n for which k±n are real.
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Figure 10. The magnified k-plane showing the effect of compressibility on the rotational modes in
a rigid-body swirl flow: o, incompressible; •, compressible.

It is possible to choose the body force Fx(r, x) such that only one radial acoustic
mode, say n = N, is generated. This is done by taking

Fx(r, x) = ymN(r)F(x) (50)

so that F̃(r, k) = ymN(r) F̃(k). On substitution into (49), by the orthogonality property
of the eigenfunctions, all Fn (n = 1, 2, . . .) are zero except FN . This gives

p(r, φ, x, t) =


2π2k+

N F̃(k+
N)ymN(r)ei(k+

Nx+mφ−Ωt)

ΩM + (1−M)k+
N

, x > 0

−2π2k−N F̃(k−N)ymN(r)ei(k−Nx+mφ−Ωt)

ΩM + (1−M)k−N
, x < 0,

(51)

where Ω2 > (1 − M2)λ2
mn for the mode to be a propagating mode. Formula (51)

provides an exact analytical solution that is useful for validating results of direct
numerical simulation of the acoustic modes generated by body forces in the flow.

Figure 11 shows the wavenumber of the four propagating acoustic modes for the
case M = 0.3, Ω = 0, m = 2, Ω = 10.0 and σ = 0, 4. Also shown (as filled circles) are
the wavenumbers of the acoustic modes with a rigid-body swirl of Ω = 0.5. The effect
of swirl is quite small in this case. The change in the eigenfunctions due to swirl is
also quite small.

5. Discussion
For ducted inviscid compressible swirling flows, the wave modes do not form a

complete set. As a result, ambiguity arises when a standard normal mode analysis
is used to determine the intrinsic wave modes of the flow. Previous workers, using



18 C. K. W. Tam and L. Auriault

Re (k)

Im (k)

50

25

0

–25

–50
–15 –5 5–10 0 10

Figure 11. The magnified k-plane showing the effect of swirl on the acoustic modes: o, modes
without rigid-body swirl; •, modes with rigid-body swirl.

such an approach, found a continuum of purely convected modes. We have shown
by using the initial value approach that these modes are spurious. They are not the
correct analytic continuation of the physical solution.

For a swirling flow inside an annulus, there are two families of waves. They are
the acoustic modes and the rotational modes (assuming there are no unstable shear
waves). In this work, we have investigated numerically these wave modes associated
with simple model mean flows. For a non-simple mean flow with a general distribution
of axial and azimuthal velocity components u(r) and w(r), the determination of
the waves generated by a given body force distribution is not straightforward. An
alternative way to find the waves produced is to use time-domain direct numerical
simulation. However, to implement such a simulation, it is necessary to ensure there
is adequate numerical resolution. For this purpose, one must have an idea of the
magnitude of the wavenumbers of the modes involved. For the rotational modes, one
can define an averaged angular velocity of the flow Ω and use (36) to obtain k1 and k2.
As an estimate one may use (37) to find the range of wavenumbers of the rotational
modes. For the acoustic modes, only the propagating modes need be considered. The
wavenumber of a propagating mode must be real. From (48), in order that k±n is real
the radial mode number n must be limited to the largest integer N such that

Ω2 > (1−M2)λ2
mN
.

Here M is an average Mach number of the flow. With N determined, the relevant
wavenumbers can be estimated by equation (48).

In this paper, we have confined our investigation to the determination of the number
of families of wave modes an axially uniform swirling ducted flow will support and
some of their propagation characteristics. The scope of this study is limited. It does
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not extend to many interesting areas of applications in turbomachinery noise. In a
turbofan engine, because of the presence of many rows of rotors and stators, there are,
invariably, significant changes in the swirl in the axial direction of the engine. There
exists in the literature a body of works devoted to the phenomenon of wave mode
reflection and trapping as a result of axial variation in swirl. For a detailed analysis
and discussion of this aspect of swirling flow and noise, the readers are referred to
the works of Topol, Holhubner & Mathews (1987) and Hanson (1993, 1994).

The authors wish to thank Philip Gliebe of the GE Aircraft Engines for his
encouragement and enthusiastic support of this investigation. Funding for this work
was provided by the GE Aircraft Engines as part of an Independent Research and
Development Project.
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